A Review on Data Mining Methods for Identity Crime Detection
نویسندگان
چکیده
Identity Crime is well known, established, and costly. Identity Crime is the term used to refer to all types of crime in which someone wrongfully obtains and uses another person’s personal data in some way that involves fraud or deception, typically for economic gain. Forgery and use of fraudulent identity documents are major enablers of Identity Fraud. It has affected the e-commerce. It is increasing significantly with the development of modern technology and the global superhighways of communication, resulting in the loss of lots of money worldwide each year. Also along with transaction the application domain such as credit application is hit by this crime. These are growing concerns for not only governmental bodies but business organizations also all over the world. This paper gives a brief summary of the identity fraud. Also it discusses various data mining techniques used to overcome it.
منابع مشابه
Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart Diseases
Today, a great deal of data is generated in the medical field. Acquiring useful knowledge from this raw data requires data processing and detection of meaningful patterns and this objective can be achieved through data mining. Using data mining to diagnose and prognose heart diseases has become one of the areas of interest for researchers in recent years. In this study, the literature on the ap...
متن کاملAdaptive Spike Detection for Resilient Data Stream Mining
Automated adversarial detection systems can fail when under attack by adversaries. As part of a resilient data stream mining system to reduce the possibility of such failure, adaptive spike detection is attribute ranking and selection without class-labels. The first part of adaptive spike detection requires weighing all attributes for spiky-ness to rank them. The second part involves filtering ...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملDesigning an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملEfficient Voronoi K-Means Algorithm for Mining Local Crime Spatial Outliers in Spatial Crime Data
Through the boosting accessibility of spatial and temporal data in many research fields, spatial clustering and spatial outlier detection has received a group of concentration in the spatial data mining research. As a very famous method, the CLIQUE Optimization finds a region that deviates significantly from the entire spatial data set. In this paper, we introduce the novel problem of mining cr...
متن کامل